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Abstract. A very simple treatment is presented to describe a phase transition present in 
Dicke’s model for super-radiance, in the off-resonance case and for a single radiation 
mode. The results agree with previous authors, although the use of In) states provides a 
transparent physical interpretation. 

Our results show that if the A 2  term is kept in the Hamiltonian, the phase transition 
persists, thus clarifying some recent controversy on the subject. The thermodynamic 
variables are calculated above and below T,. The phase transition is shown to be a 
consequence of an instability of the ground state. The behaviour of ( a t a )  and (S,) is 
explored as a function of temperature. (uta)  goes to zero as ( T , - T )  near the critical 
temperature. 

1. Introduction 

The problem of interaction between a spin system and electromagnetic radiation is the 
central one in quantum optics. Many advances have been made since Dicke (1954) 
suggested the idea that atoms could interact in a collective way, via the electromag- 
netic field. The statistical behaviour of the Dicke model has been extensively studied 
by various authors (Tavis and Cummings 1968, Scharf 1970, Narducci et a1 1973a, b). 

A considerable interest was generated when a phase transition was found for 
certain values of the coupling constant (Hepp and Lieb 1973a). When the coupling 
constant is larger than a critical value, a second-order phase transition between 
‘normal’ and ‘super-radiant’ states was found. The name ‘super-radiant states’ was 
introduced by Hepp and Lieb. It is quite clear that here we are dealing with a thermal 
equilibrium situation, as opposed to the case of super-radiant pulses, which are fast 
time-dependent phenomena. The similitude between the two is that in normal and 
super-radiant pulses, the maximum intensity of the emitted light pulse is proportional 
to N and N 2  respectively and in the equilibrium case, the average number of photons 
is proportional to N below T, and zero above T,. 

A similar condition to that of Hepp and Lieb was found in connection with an 
instability of the ground state, in the sense that the ground state of the Hamiltonian 
changes from the vacuum state (no photons, all spins down) to a state with non-zero 
number of excitations when the coupling constant becomes larger than the critical 
value (Narducci et al 1973a). 

Wang and Hioe (1973) were able to derive the phase transition in a simple way, 
making use of Glauber’s coherent states. They calculated the free energy of this 
model, in the thermodynamic limit. 
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In this paper, we study the second-order phase transition of Dicke’s model, 
making use of the In) states. In § 2 the model is briefly reviewed outlining the main 
features; in 0 3, the phase transition is obtained. The In) states for the field provide a 
transparent physical interpretation of the results. In § 4 we deal with Dicke’s Hamil- 
tonian when the A2 term, which is normally neglected, is included. The results show 
that the phase transition is not modified, thus clarifying some recent controversy on 
the subject (Rzgiewski et a1 1975, Rzgiewski and W6dkiewicz 1976, Gilmore and 
Bowden 1976a, b, Gilmore 1976, Orszag 1977a). Then 0 5 is devoted to calculations 
of the various thermodynamic variables of interest, below and above the critical 
temperature. 

2. Themodel 

Consider a system of N identical two-level atoms, interacting via the electromagnetic 
field, through dipole interaction, in a cavity of volume V. Assume also that the 
wavelength is much larger than ( V)1’3. 

Using the rotating-wave approximation, the Hamiltonian is: 

where at  and a are the usual creation and annihilation operators and U: is the z 
component of Pauli spin matrices. 

In equation (l), E is the non-resonant parameter. When E = 1, the frequency of the 
radiation is identical with the frequency corresponding to the two levels. A single 
radiation mode is considered here; A is the coupling constant. 

3. The phase transition 

Following Wang and Woe, we can write the Hamiltonian (1) in the following form: 

The thermodynamics of this model can be calculated, once the partition function is 
known. The partition function is defined as: 

2 = Tr[exp(-pH)]. (3) 
Using the In) states for the field, the partition function can be written as: 

In the thermodynamic limit, we will assume: 

N + 00, V + 00, (N/ V )  = finite, 
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and also 

The equation (6) was used by Wang and Hioe. A rigorous proof of this method was 
presented by Hepp and Lieb (1973b). 

Assuming equation (6) to be true, in the thermodynamic limit, then ( a t a / N )  
commutes with the rest of the Hamiltonian and we can write: 

Define: 

then 

[hi, hj] = 0;  

therefore: 

So we can write the partition function Z as: 

It is a simple problem to diagonalise h, namely: 

E ha 

hat  
= 0,  

r p  JN 
JN 2 p  

E --- 

where p are the eigenvalue's of h. Notice that we will carry out the diagonalisation as 
if and at/N"2 were c numbers. Since they commute, a function of this 
operator can only be interpreted as a power series expansion and the order in which 
they appear is not important. The solutions for p are: 
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Therefore the partition function can be written as follows: 

or 

In a more compact form: 

[Steps 1/N] 

where x = n/N.  

tribute, so: 
In the thermodynamic limit, only the largest term in the summation will con- 

where x,,, is the value of x that gives the maximum contribution to Z in equation 
(15). To find xmax, set: 

The solution for equation (17) is: 

where: 

Obviously, equation (18) is transcendental in x and cannot be solved explicitly. In 
spite of this fact, the analysis of equation (18) is the key to the study of the phase 
transition. 

Since 0 6 x =s CO, from equation (19) we see that 1 s 77 s CO; therefore, equation 
(1 8) has a solution only if: 

A 2 > € .  (20) 

In the light of this result, we can identify two regions. 

Region 1 

A < Jc. (2 1) 
The largest term in the summation of equation (15) corresponds to x = 0, therefore 

Z = [ 2 

and there is no phase transition present. 
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Region 2 

A > JE. 
This case can be studied graphically. From figure 1, we see that: 

( a )  if p <pc,  there is no solution r] > 1;  therefore xmax = 0 and Z is given by 
equation (22); 

( b )  if p >pc then equation (18) has a solution xmax#O. From figure 1, we can 
readily see that the critical temperature is obtained by setting r] = 1 in equation (18), 
namely: 

E 
tanh( F) = - 

A 2’ 

I r ,’ / 

/ i  
I 
1 

0 r ) 1  

Figure 1. Graphical analysis of the equation tanh(fep7) = (e/A’)q. The straight lines A 
and B are plots of (€/A ’)7 against q for: A, A < e  ; B, A >e. The curves C, D and E are 
plots of tanh(4cpq) against q for: C, /3 >pc;  D, p = P E ;  E, p < P E .  In region 1 ( € / A Z >  l), 
there is no solution; in region 2 ( € / A 2 <  l) ,  there is a solution for 1) > 1 provided /3 >pc. 

Summarising the results of this section, the Dicke model can describe a phase tran- 
sition if there is a strong coupling between atoms and the field. The critical coupling 
constant is modified if counter-rotating terms are included in the Hamiltonian (Car- 
michael et a1 1973, Orszag 1977a). 

4. The controversy 

As mentioned in the introduction, a controversy was originated when Rzgiewski, 
W6dkiewicz and Zakowicz suggested that the presence of the phase transition was due 
entirely to the absence of the A’ term in the Hamiltonian. The countervailing 
viewpoint was supported by Gilmore, Bowden and Orszag (Gilmore and Bowden 
1976a, b, Gilmore 1976, Orszag 1977a, b). 

In this section, we include the A2 term in the Hamiltonian and determine its effect 
on the phase transition. 
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The modified Hamiltonian will now be: 

where ata/N as well as ( u ~ / N ' / ~ + ~ / N ' / ~ ) ~  commute with the Hamiltonian. The 
partition function Z is: 

Summing over the spin variables, we get: 

PK ){  [ ~ 2 p (  y 2  4yn)112]i]N~n) 00 

Z =  [exp(-pn)](nI [exp( - F ( a  +at)2 2 cosh - 1 +- - 
n = O  

or simply: 

It is simple to prove that (see appendix): 

(n\exp[-@K(a + at)2]ln) = [exp(-2PKn)]lo(2PKn), (28) 

where 10(2pKn) is the zeroth-order modified Bessel function. We write the partition 
function as: 

[steps 1/Nl 

- 2NPKx +ln(lo(2PKxN))]. 

If the maximum corresponds to xmax=O, then the last two terms of equation (29) 
vanish, and there is no contribution from the A2 term. On the other hand, if the 
maximum corresponds to x,,, # 0, then when N + a, 

10(2pKxN) + [exp( 2@KxN)]/[ (27r)(2p KxN)] ' I 2 .  (30) 
The last two terms of equation (29) corresponding to the A2 contribution, will be: 

- 2NPKx +1n(lo(2PKxN)) = - 4  ln(47rpKxN). 

As a conclusion of this section, we state that the A* term in Dicke's Hamiltonian does 
not affect the phase transition, since in the thermodynamic limit these terms con- 
tribute (In N)/N + 0 to the free energy. 

Gilmore and Bowden (1976b) arrived at the same conclusion, using a completely 
different procedure. They used Bogoliubov's method to linearise the Hamiltonian 
when the A2 term was included. Then they proceeded to minimise the free energy 
with respect to the parameters of the transformation. Their Hamiltonian, which is a 
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linearised version of Dicke’s, proved to be thermodynamically equivalent to Dicke’s 
Hamiltonian. Therefore it is only meaningful to compare the two methods strictly in 
the thermodynamic limit. When N + 00, both methods reach the same conclusion. 

5. Thermodynamics 

So far, we have not said anything about the nature of the phase transition. In this 
section we are going to explore the properties of the thermodynamic quantities of 
interest, across the critical point. 

5.1. Heat capacity 

Define: 

After some algebraic work, the heat capacity is found to be: 

These results agree with Hepp and Lieb. 

5.2. Magnetisation 

Consider a Hamiltonian of the form: 

N 

H = H’(f i /2)  a:+ Ho, 
i = l  

where f i  = g p B ,  g being the Land6 factor, pB Bohr’s magneton and H’ the external 
magnetic field. 

The magnetisation is defined as: 

1 
M ( T ,  H’) =-Tr[fiSz 2 exp(-pH)], (33) 

where: 

We can write equation (33) simply as: 

A4 =#G(Sz).  

In terms of 2 the magnetisation becomes: 

1 ?J I n 2  
p aH’ N 

m(T, H’)= -- - ( - ) (per molecule). 
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In the Dicke Hamiltonian, we associate 

Using equation (29) and the condition stated in equation (23) for @ < pc and @ > Pc, it 
is simple to show that: 

[ -$ t a n h ( 9  @ cpc ,  

=[-e(-) 2 h 2  P ' P C .  

Notice that m is a continuous function of T across Tc. This result is in agreement with 
Gibberd's work. 

5.3. Number of photons 

The quantity (a'a) is of physical interest. We calculate it as follows: 

($)=[ -'"(")] , 
p as N s=l  

where S is a dummy variable defined by: 

2 = x = o  f [ [exp(-PSx)]2 cosh ($41". 
From equation (39) and the partition function, we get: 

( a b )  = Nx,,,. 

(39) 

(40) 

There are two cases. 

Case 1 .  T >Tc and (ata)=O. 
Case 2. T < T, and (a ' a )  = Nx,,,, where xmax is the solution of equation (18). 

6. Discussion 

We are now going to analyse briefly the results of the last section. From equation (37), 
we infer that: 

--& tanh(&p) P < P C  

- ~ N ( E / A  *) P ' P C  

( S Z  ) A '26 = 
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These results are displayed graphically in figure 2. (An equivalent graph 
by Gibberd (1974).) 

was obtained 

I 
T, 

T 

Figure 2. Behaviour of (S,) as a function of temperature. Case (a) is for A2>e and case 
( 6 )  for A2<r .  

At T = 0, the ground state of the system corresponds to (S,) = -4ZV when A JE,  
which is the state with all spins down. A dramatic change occurs when A > d e ,  namely 
that at T = 0, the ground state corresponds to (&) = -Ne/2A2, which indicates the 
presence of a non-zero number of excitations (Narducci et a1 1973a). We also notice 
that aM/dT, a M / d ~ ,  and the heat capacity are discontinuous across T,. These facts 
indicate that we are dealing with a second-order phase transition. 

Turning now to the average number of photons, at T = 0 we have: 

or 

and 

d(ata) IF l T=O = 0. 

(43) 

(44) 

These results are displayed in figure 3. (The square root of this figure was published 
by Gilmore and Bowden 1976a). 

Although this model is semiclassical in the sense that we have neglected the 
commutation rules €or the field, an order parameter has to be defined in order to 
compare this model with others (Gilmore and Bowden 1976a, b, Stanley 1971). 
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T 

Figure 3. B;haviour of the average number of photons as a function of temperature for 
A’>€. If A <e, then (ata)  is zero for all temperatures. A, d(ata)/dT=O; B, (ata)K 
(T- T,). 

The coupling constant A is defined as: 

A = dJ(27rp)/J(ho) 

where d is the dipole matrix element. 
For a low density gas ( p  - 1 Torr) at room temperature and optical or higher 

frequencies, A is normally much less than unity, and the effect described here is not 
observable. On the other hand, at the lower part of the spectrum (infrared or 
microwaves) and higher densities, A could be unity or higher. Notice that if the 
density of the radiating medium is increased up to a point where the spatial com- 
ponents of the wavefunctions of the individual particles start to overlap, then we have 
to symmetrise or anti-symmetrise them, since they are indistinguishable. We have 
assumed throughout this work that the particles are independent and coupled only 
through a common field. We have also neglected any direct interaction (collisions, 
etc). If we take an example of a resonant system, and € / A 2  = 0.9, then the critical 
temperatures will be T, = 8160 K (Ao = 6000 A), T, = 490 K (Ao = 10 pm) and T, = 
49 K (Ao = 100 pm). A more realistic Hamiltonian, including phonons and with less 
stringent conditions on the coupling constant is described elsewhere (Orszag 1977b). 
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Write: 

2005 

exp[ -PK( &+$)’NI 

and since 
[a/JN, a ‘/JN] = 0, 

we can rewrite equation (A. 1) as follows: 

exp[-PK (a + a +)’I 
={exp[-2PK(atu)]}( l - - (~) ’+- (a)~ .  PK ( P W 2  . . )  

l !  2! 

Considering that exp[-2P (a ‘ a ) K ]  contains only diagonal terms, the only surviving 
terms in (A.2) will be the ones with equal power in a and at, namely: 

Using equation (A.3), we finally write: 

(nl exp[-PK(a +at)211n> 

= [e~p(-2PKn)]~~(2PKn).  
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